Associate Professors

Tianli Bo

Name:Tianli Bo
Date of Birth:February 28, 1980
Nationality:China
Institution:College of Civil Engineering and Mechanics, Lanzhou University
Address:222 Tinashe Road, Lanzhou 730000, China
Tel:
Fax:
Email:btl@lzu.edu.cn
Education
Sep 2006-Dec 2010 Ph.D. in Mechanics, School of Civil Engineering and Mechanics,
Lanzhou University, Lanzhou, China Supervisor: Prof. Xiaojing Zheng
Sep 2003-Jun 2006 M.E. in Mechanics, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China Supervisor: Prof. Xiaojing Zheng
Sep 1999-Jun 2003 B.E. in Mechanics, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China
Appointments
Jun 2013-present Associate Professor, College of Civil Engineering and Mechanics,
Lanzhou University, Lanzhou, China
Apr 2008-May 2013 Lecturer, College of Civil Engineering and Mechanics,
Lanzhou University, Lanzhou, China
Research Areas
Engineering mechanics Environmental mechanics
Visiting Positions
Members and Activities
Awards
2011 National Outstanding Doctoral Dissertation Nomination Award
Main Courses
Research Grants
Refereed Publications

2018

  1. Zhang XB, Li DF, Bo TL*. The variation of the vertical electric field (Ez) with height during dust storms and the effects of environmental variables on Ez [J]. Granular Matter, 2018.
  2. Yang H, Bo T*. Scaling of Wall-Normal Turbulence Intensity and Vertical Eddy Structures in the Atmospheric Surface Layer[J]. Boundary-Layer Meteorology, 2018, 166(2): 199-216.
     
    2017
  3. Han G, Zheng X J, Bo T*. Experimental investigation of turbulent transport of momentum and heat in the atmospheric surface layer[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164: 18-28.
  4. Huang H J, Bo T L*, Zhang R. Exploration of splash function and lateral velocity based on three-dimensional mixed-size grain/bed collision[J]. Granular Matter, 2017, 19(4): 73.
  5. Bo T L, Fu L T, Liu L, Zheng X*. An improved numerical model suggests potential differences of wind‐blown sand between on Earth and Mars[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(11): 5823-5836.
  6. Liu H Y, Bo T L*, Liang Y R. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers[J]. Physics of Fluids, 2017, 29(3): 035104.
  7. Zhang H, Bo T L, Zheng X*. Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations[J]. Earth and Planetary Science Letters, 2017, 461: 141-150.
    2016
  8. Zheng X*, Wang G, Bo T, et al. Field Observations on the Turbulent Features of the Near-surface Flow Fields and Dust Transport During Dust Storms[J]. Procedia IUTAM, 2016, 17: 13-19
  9. Zheng X, Bo T, Liang Y, et al. Monitoring system for turbulence of atmospheric boundary layer under wind drift sand flow or sand dust storm environment: U.S. Patent 9,500,769[P]. 2016-11-22.
  10. Zheng X, Bo T, Liang Y. Real-time synchronous measuring system for multiple factors such as wind-blown sand electric field, sand particle charging and wind speed: U.S. Patent 9,244,191[P]. 2016-1-26.
     
    2015
  11. Bo T L, Ma P, Zheng X J*. Numerical study on the effect of semi-buried straw checkerboard sand barriers belt on the wind speed[J]. Aeolian Research, 2015, 16: 101-107.
     
    2014
  12. Bo T L, Li Z, Zheng X J*. Sand particle dislodgement in windblown sand[J]. Acta Mechanica Sinica, 2014, 30(6): 910-916.
  13. Huang H J, Bo T L*, Zheng X J. Numerical modeling of wind-blown sand on Mars[J]. The European Physical Journal E, 2014, 37(9): 80.
  14. Bo T L, Zhang H, Zheng X J*. Charge-to-mass ratio of saltating particles in wind-blown sand[J]. Scientific reports, 2014, 4.
  15. Wang G, Bo T, Zhang J, Zhang J*. The critical frequency of the large-scale vortices and the background turbulence in desert area[J]. Atmospheric Research, 2014, 143: 293-300.
  16. Fu L T, Bo T L*, Zheng X J. Lift-off parameters of saltating particles on Mars[J]. Icarus, 2014, 234: 91-98.
  17. Zhang H, Zheng X J, Bo T L*. Electric fields in unsteady wind-blown sand[J]. The European Physical Journal E, 2014, 37(2): 1-12.
  18. Wang G, Bo T, Zhang J*, et al. Transition region where the large-scale and very large scale motions coexist in atmospheric surface layer: wind tunnel investigation[J]. Journal of Turbulence, 2014, 15(3): 172-185.
  19. Bo T L, Zheng X J*. A new expression describing the migration of aeolian dunes[J]. Catena, 2014, 118: 1-8.
     
    2013
  20. Bo T L, Ma P, Zheng X J*. Numerical study on the effect of semi-buried straw checkerboard sand barriers belt on the wind speed[J]. Aeolian Research, 2015, 16: 101-107.
  21. Zhang H, Zheng X J, Bo T*. Electrification of saltating particles in windblown sand: Experiment and theory[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(21).
  22. Bo T L, Zhang H, Hu W W, Zheng X J*. The analysis of electrification in windblown sand[J]. Aeolian Research, 2013, 11: 15-21.
  23. Liu H Y, Bo T L*, Wang G H, et al. The Analysis of Turbulence Intensity and Reynolds Shear Stress in Wall-Bounded Turbulent Flows at High Reynolds Numbers[J]. Boundary-layer meteorology, 2014, 150(1): 33-47.
  24. Fu L T, Bo T L*, Gu H H, et al. Incident angle of saltating particles in wind-blown sand[J]. PloS one, 2013, 8(7): e67935.
  25. Bo T L, Zheng X J*, Duan S Z, et al. Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles[J]. The European Physical Journal E, 2013, 36(5): 1-10.
  26. Zheng X J, Fu L T, Bo T L*. Incident velocity and incident angle of saltating sand grains on Mars[J]. New Journal of Physics, 2013, 15(4): 043014.
  27. Bo T L, Zheng X J*, Duan S Z, et al. Analysis of sand particles’ lift-off and incident velocities in wind-blown sand flux[J]. Acta Mechanica Sinica, 2013, 29(2): 158-165.
  28. Bo T L, Zheng X J*, Duan S Z, et al. The influence of wind velocity and sand grain diameter on the falling velocities of sand particles[J]. Powder technology, 2013, 241: 158-165.
  29. Bo T L, Zhang H, Zhu W, Zheng X J*. Theoretical prediction of electric fields in windblown sand[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4494-4502.
  30. Bo T L, Zheng X J*. Collision behaviors of barchans in aeolian dune fields[J]. Environmental earth sciences, 2013, 70(7): 2963-2970.
  31. Bo T L, Fu L T, Zheng X J*. Modeling the impact of overgrazing on evolution process of grassland desertification[J]. Aeolian Research, 2013, 9: 183-189.
  32. Bo T L, Zheng X J*. Wind speed-up process on the windward slope of dunes in dune fields[J]. Computers & Fluids, 2013, 71: 400-405.
  33. Bo T L, Zheng X J*. Numerical simulation of the evolution and propagation of aeolian dune fields toward a desert–oasis zone[J]. Geomorphology, 2013, 180: 24-32.
  34. Bo T L, Zheng X J*. A field observational study of electrification within a dust storm in Minqin, China[J]. Aeolian Research, 2013, 8: 39-47
     
    2012
  35. Fu L, Bo T*, Du G, et al. Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow[J]. Ecological modelling, 2012, 247: 221-232.
    Before 2012
  36. Bo T L, Zheng X J*. The formation and evolution of aeolian dune fields under unidirectional wind[J]. Geomorphology, 2011, 134(3): 408-416.
  37. Bo T L, Zheng X J*. Bulk transportation of sand particles in quantitative simulations of dune field evolution[J]. Powder technology, 2011, 214(2): 243-251.
  38. Bo TL, Zheng XJ*, Analysis on the dynamic behaviors of Aeolian sand ripples and sand dunes[J]. Chinese Science Bulletin, 2009, 54(11):31488~31495
  39. Zheng X J, Bo T L*, Zhu W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2009, 10(3): 387-395.
  40. Zheng X J, Bo T L*, Xie L. DPTM simulation of aeolian sand ripple[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(3): 328-336.
    Bo T, Xie L, Zheng X*. Numerical approach to wind ripple in desert[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(2): 223.